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Abstract. All possible types of solutions of the non-linear spherical radial Poisson- 
Boltzmann equation, describing the spatial distribution of the particles in a classical 
two-component Coulomb gas, are investigated analytically and numerically. The obtained 
solutions show that every particle of the system and its screening cloud forms an atom- or 
ion-like structure and reveals a tendency towards condensation in the Coulomb gas. 

In this paper the non-linear spherical radial Poisson-Boltzmann ( PB) equation is 
investigated. This equation describes the spatial distribution of the particles in a 
classical Coulomb gas. In thermal equilibrium an average electrostatic potential cp can 
be introduced into the system. This potential is determined by the spatial distribution 
of the particles, which in turn is controlled by that potential. 

In thermal equilibrium the spatial distribution of the charged particles follows the 
Boltzmann law in the self-consistent field cp. Consequently, for the concentrations of 
the positive and negative particles, n, and n-, respectively, we obtain 

n, = no exp(-ecp/ k T )  n- = no exp( ecp/ k T ) .  (1) 
Here no is the average concentration of the particles, e is the absolute value of the 
electron charge, T is the absolute temperature and k is the Boltzmann constant. 

In this case for the space-charge density we obtain 

p = -2en0 sinh(ecp/ k T ) .  (2)  
Setting p into the Poisson equation we obtain the self-consistent non-linear Poisson- 
Boltzmann equation (Debye and Huckel 1923) 

A ( Z )  =(%) s i n h ( g ) .  

If ecp/ kT = +, X = f x ,  Y =fy and 2 =fz, equation (3) has the form 

Here f = (8rnoe2/ &kT)''' is the reciprocal Debye length, which is the characteristic 
space parameter of the Coulomb gas. 

A +  = sinh +. (4 1 

In spherical symmetry, equation (4) has the form 

+"+(2/R)$ '=sinh 4 R 2 = X 2 +  Y 2 + Z 2 .  (5) 
The physical situation described by the Poisson-Boltzmann equation in this sym- 

metry is the following: at R = 0 it can be regarded as the existence of a motionless 
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positively charged particle. The spatial distribution of the charged particles of the 
Coulomb system is determined by the solutions of the non-linear equation ( 5 ) .  A 
similar formulation of the self-consistent problem is first given by Debye and Hiickel 
(1923) in their linear theory of electrolytes. In this theory the PB equation is linearised 

J ,”+(2 /R)J , ’=  J, (6) 

and has a solution 

+ = ( A /  R )  eCR (7 )  
which is vanishing at infinity. In the linear theory the concentration of the particles 
is a monotonously decreasing function of R and the singularity at R = 0 is related to 
the point charge of the central particle. 

The non-linear PB equation (5 )  also possesses a monotonously decreasing (+J 
solution (Lampert and Crandall 1979, 1980)-a generalised non-linear Debye-Hiickel- 
type solution. 

The non-linear PB equation ( 5 )  also possesses two different types of solutions, 
which are not monotonously vanishing. In figure 1 we present all three types of 
solutions of equation ( 5 )  for the self-consistent potential. The realisation of a certain 
type of these solutions is determined by the initial conditions (Couche boundary 
conditions) for CC, and its derivative +’ at R = Ro.  

w 

Figure 1. Exemplary spatial variation of the three possible types of solutions of the 
non-linear PE equation (ILs ,  CL,, 
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From here on we suppose that R > O  and R, denotes the right boundary of the 
maximum interval in which a given solution $ still exists. (In principle R, could be CO.) 

Lemma 1. If $(I?) > 0 at some I?, then the solution does not have a local maximum 
at I?. If $(R)  < O  at the point I?, then $(R)  does not have a local minimum at R. 

Let $ have a local maximum at R and $’(E) = 0. From ( 5 )  it follows that $“(I?) > 0, 
which is impossible. By analogy, one can prove the second part of lemma 1. 

Corollary 1. From lemma 1 it follows that if $ ( E )  > 0 and $’(I?) > 0, then $( R )  is an 
increasing function in the interval (I?, R,). 

Corollary 2. By analogy, if at some I?, $( 8) < 0 and $’( 8) < 0, then $( R )  is a decreasing 
function in the interval ( R ,  R+). 

Let us assume that R, is finite and limR,,+ $(R) = C, O <  C <Co. Then if 
lim,,,+ $‘( R) < 00, R, is not the maximal interval of existence of the solution, as 
follows from the theorem of Picar-Lindelov (Hartman 1964). 

If limR+R+ $’(R) = 03, then from ( 5 )  it follows that lim,,,+ $”( R )  = -W. This is 
impossible, because limR,,+ $’( R) = $’(I?) +I2 +”( R )  dR < +a. NOW let R, = 03. 

Then obviously limR+, d$/dR = 0, hence limR+m $”> 0 which is impossible, because 
in this case we have 

lim (L’(R)=$(R)+ $“dR=oO. 
R-CS sa 

Lemma 3. If for some R, $(I?) < 0 and $ ’ ( E )  < 0, then limR+R+ $( R )  = -W. The proof 
is analogous to the proof of lemma 2 .  

Lemma 4. If $ is a solution of equation ( 5 )  and at some I?, $( R )  > 0 and $‘(I?) > 0, 
then R, is finite. 

As follows from lemma 1, $ is a reversible function in the interval [I?,  Roo). The 
reverse function R($) is defined in the interval [a,  CO), where 0 < a = $ ( E ) .  For the 
function we obtain 

(d$/dR) = (dR/d$)-’ 
(8) 

From (5) we obtain 

g = - ( % ) ’ s i n h $ + -  d2 R - 
R(*) d* 

(9) 

From lemma 1, it follows that R($) is a strictly increasing and positive function. 
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Consequently for its asymptotic behaviour there exist three possibilities: 

lim dR/d$  = d O < d < m  
*-a 

(i) 

(ii) lim dR/d$  = 00 
*-w 

(iii) lim dR/d$  = 0. 
*-a; 

In case (i), from equation (9) it follows that lima+= d2R/d$2 = -a. Consequently for 
some $, we obtain (dR/d$<O),  which is impossible. 

In case (ii) we also obtain from (9) that lim*+= d2R/d+’ = --CO because sinh $ is 
an increasing function and (R($))-’  is a limited decreasing function. As was shown 
above, this is a contradiction. Consequently lim*+= dR/d$  = 0. 

We shall further prove: lim,,w(dR/d$)3 sinh $ = 0. 
Let us assume the contrary: 

(A) l im(dR/d$)3 sinh $ = 00 
*-.m 

l i m ( d R / d $ ~ ) ~  sinh $ = (e O <  % < W .  
*+a 

(B) 

In case A we also obtain lim*+a; d2R/d+’ = -00 which, as was shown, is impossible. 
In case B we obtain from equation (9) lim++w d2R/d$’ = -%. Let us take E > 0, such 
that e - % < O a n d d 2 R / d $ 2 < e - % f o r s o m e ~ > $ > a ;  then 

and 

hence lim+= dR/d$  = -00, which is impossible. 

exists a function $*, such that + > $* is fulfilled; 
From the proven property lim,,,(dR/d~,b)~ sinh $, it follows that there always 

dR E 
0<-< 

( g ) 3 s i n h $ < ~ 3  d$ (sinh 

Now let 

R, = lim R ( $) = Iam (g) d$ + l? = la** (g) d$ + 1; (g) d$ + l? 
*-= 

but 

E 
d$ < 00. O0 dR 

(G) d* < (sinh 

Consequently R, has a finite value. 

f( $) = sinh $: 
In the above proofs we only used the following two properties of the function 

(i) f($) is a strictly increasing function, 
(ii) jT* (f($))-1’3 d$ < W .  

Therefore, some results are strictly applicable for any Poisson equation with the 
right-hand function f( +) which has the above-mentioned properties. 
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These results show that besides the monotonously decreasing solution (LL (Lampert 
and Crandall 1979, 1980) the non-linear spherical PB equation also possesses other 
solutions. These solutions tend to +CO (U type) or to -CO (S type) at finite R,. 

The non-linear PB equation in the plane symmetry case also possesses similar 
solutions, as was shown by Georgiev et a1 (1980) and Martinov et a1 (1984), in solving 
this equation analytically. 

We carried out a computer integration of the non-linear PB equation (5) using the 
Runge-Kutta method. The obtained U- and S-type solutions are shown in figure 2. 
These numerical calculations confirm our analytical results. 

The type of the solution depends of course on the boundary conditions, which, as 
we shall show, depend on the parameters of the Coulomb gas of temperature and 
concentration. Let us assume that a U-type solution Cccurs in the system. 

For every solution of this type there exists a point R in which the electrostatic field 
$‘(k) is equal to 0. If we apply the Gauss theorem for a sphere with radius R we 
shall find that the charge inside this sphere is also zero. Inside the sphere we have 
the charge of the central positive particle e and the charge of the screening cloud Q 

Using (5) we obtain for Q 

where R, is an initial point, chosen such that the interval [0, RO] is less than the average 
distance between the particles of the system. 

- 0 . 2 1  
Figure 2. U- and S-type solutions of the non-linear PB equation numerically obtained by 
the following initial conditions; Ro = 0.57, Jlos = GS( R,) = 0.074, JIDu = Jlu( R,) = 0.100, 
$b(S, U) = (L’(R0) = -0.211. 
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Consequently the point Ro is very near the central particle, where there are no 

From the electroneutrality condition Q = -e, the system is a central particle with 
screening particles. 

a polarised Coulomb gas around it and from (16) it follows that 

+'( R = R,) = I& = -e2/ Ofr& ro = Rolf: (17) 

(18) 

The corresponding initial value of the electrostatic field dp /d r  is 
2 ( d p / d r ) r =  r,=-e/&rO 

or exactly the Coulomb field of a point particle. This gives us grounds for assuming 
that the potential at the point r, is also a Coulomb potential 

+o = e2/eroe. 

Equation (17) is also valid in the case d = CO. The conclusion, which follows from 
this fact, is that the solution of the non-linear PB equation tends to 0 at infinity faster 
than the Coulomb potential. As shown by Lampert and Crandall (1980) the solution 
decreasing monotonically to 0 at 00 of the non-linear PB equation tends to 0 even faster 
than solution (7) of the linear PB equation. This gives us grounds for setting +'R2 = 0 
at 00, The case d = 00 is a limiting case between U- and S-type solutions. Changing 
the boundary conditions (18) and (19), which can be performed by changing the 
temperature and the concentration of the Coulomb gas, the position of the point R 
can be changed, and then only in a particular case d = 00. Further change of the 
conditions (18) and (19) will convert the type of the solution from U to S. 

Similar U- and S-type solutions arise in the atomic model of Thomas-Fermi, which 
is analogous to the model of Debye-Huckel, but treats a degenerate Coulomb gas. 
The physical meaning of these solutions was clarified by Fliige (1971). The U- and 
S-type solutions obtained by us can be interpreted in a similar way. A U-type solution 
means that the central particle is completely screened by the surrounding particles 
forming something like an atom with finite radius 2. If the temperature or the 
concentration changes in such a way that the solution turns into an S type, it can be 
said that the positive central particle 'pierces' the screening and gives rise to a 
localisation of particles of opposite sign at finite distance R, (the point at which the 
potential is tending to -CO). 

Here it should be underlined that the interval [0, R,] is finite as follows from 
lemma 4 and this is a sequence arising from the non-linearity of the PB equation. The 
case of S solutions reveals a tendency for condensation in the classical Coulomb 
system, due to the non-linearity of the equation for the self-consistent potential. 
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